

Welcome to WASP-OS’s documentation!

Contents:

	Watch Application System in Python
	Introduction

	Documentation

	Getting Started

	Videos

	Screenshots

	Installation Guide
	Building wasp-os from source

	Device Support

	Installing wasp-bootloader

	Installing wasp-os

	Troubleshooting

	Application Library
	Built-in

	Watch faces

	Games

	Integration

	Application Writer’s Guide
	Introduction

	Application life-cycle

	API primer

	How to run your application

	Application entry points

	Wasp-os Reference Manual
	System

	Device drivers

	Applications

	Bootloader

	Contributor’s Guide
	Introduction

	Developer Certificate of Origin

	Git Hints and Tricks

	Code of Conduct

	Roadmap
	0.4: Integration, Fit and finish

	0.3 (a.k.a. M3): Smartwatch

	0.2 (a.k.a. M2): Great developer experience

	M1: Dumb watch feature parity

	Licensing
	GNU Lesser General Public License

	GNU General Public License

	The MIT License (MIT)

	5-Clause Nordic License

Indices and tables

	Index

	Module Index

	Search Page

Watch Application System in Python

Introduction

Wasp-os is a firmware for smart watches that are based on the nRF52
family of microcontrollers, including hacker friendly watches such
as the Pine64 PineTime. Wasp-os includes a digital clock, a stopwatch,
a step counter and a heart rate monitor. All of these, together with
access to the MicroPython REPL for interactive tweaking, development
and testing.

Wasp-os includes a robust bootloader based on the Adafruit NRF52
Bootloader. It has been extended to make it robust for development on
form-factor devices without a reset button, power switch, SWD debugger
or UART. This allows us to confidently develop on sealed devices relying
on Bluetooth Low Energy for over-the-air updates.

Documentation

Wasp-os is has extensive documentation [https://wasp-os.readthedocs.io]
which includes a detailed Application Writer’s Guide [https://wasp-os.readthedocs.io/en/latest/appguide.html] to help you
get started coding for wasp-os as quickly as possible.

Getting Started

Wasp-os can be installed without using any tools or disassembly onto the
following devices:

	Pine64 PineTime

	Colmi P8

	Senbono K9

Use the
Installation Guide [https://wasp-os.readthedocs.io/en/latest/install.html]
to learn how to build and install wasp-os on these devices.

At the end of the install process your watch will show the time (03:00)
together with a date and a battery meter. When the watch goes into power
saving mode you can use the button to wake it again.

At this point you will also be able to use the Nordic UART Service to
access the MicroPython REPL. You can use tools/wasptool --console
to access the MicroPython REPL.

To set the time and restart the main application:

^C
watch.rtc.set_localtime((yyyy, mm, dd, HH, MM, SS))
wasp.system.run()

Or, if you have a suitable GNU/Linux workstation, just use:

./tools/wasptool --rtc

which can run these commands automatically.

As mentioned above there are many drivers and features still to be
developed, see the Roadmap for current status.

Videos

	
[image: wasp-os: Open source heart rate monitoring for Pine64 PineTime]
 [https://www.youtube.com/watch?v=lIo2-djNR48]Open source heart rate monitoring for Pine64 PineTime [https://www.youtube.com/watch?v=lIo2-djNR48]

	
[image: An M2 pre-release running on Pine64 PineTime]
 [https://www.youtube.com/watch?v=YktiGUSRJB4]An M2 pre-release running on Pine64 PineTime [https://www.youtube.com/watch?v=YktiGUSRJB4]

	
[image: How to develop wasp-os python applications on a Pine64 PineTime]
 [https://www.youtube.com/watch?v=tuk9Nmr3Jo8]How to develop wasp-os python applications on a Pine64 PineTime [https://www.youtube.com/watch?v=tuk9Nmr3Jo8]

	
[image: Developing for Pine64 PineTime using wasp-os and MicroPython]
 [https://www.youtube.com/watch?v=kf1VHj587Mc]Developing for Pine64 PineTime using wasp-os and MicroPython [https://www.youtube.com/watch?v=kf1VHj587Mc]

Screenshots

(An older version of) the digital clock application running on a Pine64
PineTime:

[image: wasp-os digital clock app running on PineTime]
Screenshots of the built in applications running on the wasp-os
simulator (the “blank” screen is the torch application):

[image: Bootloader splash screen overlaid on the simulator watch art]
[image: Digital clock application running on the wasp-os simulator]
[image: Heart rate application running on the wasp-os simulator]
[image: Stop watch application running on the wasp-os simulator]
[image: Step counter application running on the wasp-os simulator]
[image: Application launcher running on the wasp-os simulator]
[image: Self test application running a rendering benchmark on the simulator]
[image: Settings application running on the wasp-os simulator]
[image: Torch application running on the wasp-os simulator]
wasp-os also contains a library of additional applications for you to choose.
These are disabled by default but can be easily enabled by adding them
using one of the techniques is the Application Writer’s guide.

[image: Fibonacci clock application running in the wasp-os simulator]
[image: Haiku application running in the wasp-os simulator]
[image: Game of Life running in the wasp-os simulator]
[image: Music Player running in the wasp-os simulator]

Installation Guide

	Building wasp-os from source

	Device Support

	Pine64 PineTime

	The wasp-os simulator

	Colmi P8

	Senbono K9

	Installing wasp-bootloader

	nRF Connect for Android

	DaFlasher for Android

	Using an SWD programmer

	Installing wasp-os

	nRF Connect for Android

	DaFlasher for Android

	wasptool for GNU/Linux

	Troubleshooting

	OTA update mode

	Safe mode

	Normal operation

	main.py

Building wasp-os from source

Building wasp-os and launching the wasp-os simulator requires Python 3.6
(or later) and the following python modules: click, numpy, pexpect, PIL
(or Pillow), pyserial, pysdl2.

On Debian Buster the required python modules can be obtained using the
following commands:

sudo apt install \
 git build-essential libsdl2-2.0.0 python3-click python3-numpy \
 python3-pexpect python3-pil python3-pip python3-serial unzip
pip3 install --user cbor pysdl2

Additionally if you wish to regenerate the documentation you will require
a complete sphinx toolchain:

sudo apt install sphinx graphviz python3-recommonmark

Alternatively, if your operating system does not package some or any of
the above mentioned Python modules then you can install all of them
with pip instead:

pip3 install --user cbor click numpy pexpect Pillow pyserial pysdl2

You will also need a toolchain for the Arm Cortex-M4. wasp-os is developed and
tested using the GNU-RM toolchain [https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm]
(9-2019-q4) from Arm.

Note

There are known problems with toolchains older than gcc-7.3 when
link time optimization is enabled during the MicroPython build
(LTO is enabled by default).

Fetch the code from
https://github.com/daniel-thompson/wasp-os and download the prerequisites:

git clone https://github.com/daniel-thompson/wasp-os
cd wasp-os
make submodules
make softdevice

To build the firmware select the command appropriate for your board from the
list below:

make -j `nproc` BOARD=pinetime all
make -j `nproc` BOARD=k9 all
make -j `nproc` BOARD=p8 all

To rebuild the documentation:

make docs

Device Support

Wasp-os can run on multiple devices and, in time, will hopefully be ported to
many more.

In terms of deciding which device to buy we can suggest two criteria to help.

The first is simply based on aesthetic appeal. A watch is something that you
take everywhere and sits somewhere between clothing and jewellery. That means
it is important to choose a device that feels good on the wrist and
looks right when you glance at it. Aesthetics matter!

The second criteria is more subtle. In most cases, there is not really many
important technical differences between the devices. They all use a Nordic
chipset and have the same display controller running a 240x240 panel. So the
second criteria is not technical, it is about community. The Pine64 PineTime is
unique among the devices supported by wasp-os because it is intended that the
watch be used to run a variety of different open source or free software
operating systems. By manufacturing a watch with the intention that it be
hacked every which way from Sunday then we get a bigger, stronger community
focused on the PineTime. There is a vibrant support forum, multiple different
OS developers (who share ideas and knowledge even when hacking on very different
code bases) combined with a near complete set of hardware documentation [https://wiki.pine64.org/index.php/PineTime].

There’s definitely a lot of fun to be had buying something off-the-shelf and
hacking it to become something the manufacturer never intended. We know this
because we’ve done it! However there is also enormous benefit from
participating in a community, especially if you enjoy working with or learning
from other developers. Devices that can repurposed to run wasp-os are often
only sold for short periods and may experience undocumented technical changes
between manufacturing runs that can cause compatibility problems. This makes it
hard for a large community to form around these devices.

Thus the second criteria it to think about your own needs and abilities. If
you want to enjoy the social and community aspects of working together on open
source watch development then you should look very closely at the PineTime.

Pine64 PineTime

Pine64 PineTime [https://www.pine64.org/pinetime/] is a square smart watch
based on an nRF52832 SoC and includes a 240x240 colour display with touch
screen, a step counter and a heart rate sensor.

wasp-os can be installed directly from the factory default operating
system using an over-the-air update with no tools or disassembly
required. nRF Connect for Android can be used to install both the
wasp-bootloader and the
main OS image.

Note

The early adopter PineTime Developer Edition came pre-programmed
with a proprietary test firmware rather than the current factory
default OS. If you have an early adopter unit then it will appear
in the device list as Y7S. In this case the process needed for an
OTA update is different. Use DaFlasher for Android to install both
the wasp-bootloader and the
main OS image.

The developer edition [https://store.pine64.org/?product=pinetime-dev-kit]
comes without the case glued shut. This allows access to the Serial Wire
Debug (SWD) pins which can make debugging easier. On developer edition
devices it is also possible to install the wasp-bootloader using an
SWD programmer.

The wasp-os simulator

The simulator allows you to run wasp-os programs using the Python
interpreter included with your host operating system. The simulator
provides a 240x240 colour display together with a touch screen and a
physical button, all of which appears as a window on your host computer.

The simulator has large quantities of memory and, whilst useful for
exploring wasp-os and testing your programs are syntactically correct,
it is not a substitute for testing on real hardware. See
Testing on the simulator for more details on how to use the
simulator.

To launch the simulator try:

make sim

Colmi P8

The Colmi P8 [https://www.colmi.com/products/p8-smartwatch] is an almost
square smart watch based on an nRF52832 SoC and includes a 240x240 colour
display with touch screen, a step counter and a heart rate sensor.

Warning

The P8 has multiple hardware revisions and the newest version (the
one that includes a magnetic charger) uses a different and,
currently, unsupported step counter module. The new models will
boot wasp-os successfully but the step counter application will
be disabled and cannot function.

DaFlasher for Android can be used to install both the
wasp-bootloader and the
main OS image. No tools or disassembly is
required.

Senbono K9

The Senbono K9 is a circular smart watch based on an nRF52832 SoC and includes
with a square 240x240 colour with a touch screen, a step counter and a heart
rate sensor.

The wasp-os port for Senbono K9 does not, at this point, include a driver for
the touch screen because the protocol has not yet been reverse engineered. The
touch screen enumerates via I2C at address 70d (0x46) and the interrupt can
be used to detect touch screen activity but the touch coordinates cannot be
read from the hardware. Currently the touch screen can only act as a
multi-function button and can be used to cycle through the quick ring and
display notifications. This makes the device usable but not fully featured.

Note also that the to conceal the square display within the circular face this
device has a heavily tinted filter over the display. This improves the look of
the device but also significantly dims the backlight making it difficult to
read the display in strong sunlight.

DaFlasher for Android can be used to install both the
wasp-bootloader and the
main OS image. No tools or disassembly is required.

Installing wasp-bootloader

nRF Connect for Android

For Pine64 PineTime devices running Infinitime then nRF Connect for Android
can be used to install wasp-bootloader:

	Ensure the watch is fully charged before attempting to install the
wasp-bootloader. Running out of power during this process can brick
sealed devices.

	Copy reloader-mcuboot.zip (see Building wasp-os from source) to
your Android device and download
nRF Connect [https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp]
for Android if you do not already have it.

	Wake the device so that Infinitime is showing a watch face.

	Connect to the Infinitime device usnig nRF Connect, click the DFU button
and send reloader-mcuboot.zip to the device.

	When the progress meter reaches 100% the nRF Connect will disconnect
and the watch will reboot.

	The watch will boot the reloader application which draws a small blue
pine cone in the centre of the screen. The pine cone acts a progress
meter and will slowly become white. Once the update is complete the
watch will show the wasp-os logo and an additional on-screen prompt.

[image: Over-the-air update from Infinitime to wasp-os]
 [https://www.youtube.com/watch?v=lPasAt1LJmo]Over-the-air update from Infinitime to wasp-os [https://www.youtube.com/watch?v=lPasAt1LJmo]

Note

If you want to restore the PineTime factory firmware then you can
use nRF Connect to do this. Perform a long press reset and then
use nRF Connect to send reloader-factory.zip to the PineDFU
device.

DaFlasher for Android

To install the bootloader using DaFlasher for Android:

	Ensure the watch is fully charged before attempting to install the
wasp-bootloader. Running out of power during this process can brick
sealed devices.

	Download and install
DaFlasher [https://play.google.com/store/apps/details?id=com.atcnetz.paatc.patc]
and copy the DaFlasher bootloaders to your Android device. You will need
DaFitBootloader23Hacked.bin [https://github.com/atc1441/DaFlasherFiles/blob/master/DaFitBootloader23Hacked.bin] and
FitBootloaderDFU2.0.1.zip [https://github.com/atc1441/DaFlasherFiles/blob/master/FitBootloaderDFU2.0.1.zip].

	Copy bootloader-daflasher.zip (see Building wasp-os from source
above) to your Android device.

	Open the app and connect to the device (e.g. Y7S if you have a developer
edition PineTime).

	Read the disclaimer carefully, then click Ok.
PineTime).

	Click Select file and choose DaFitBootloader23Hacked.bin, then wait
for the payload to be transferred and for the install process to complete
on the watch (leaving three coloured squares on the display).

	Press the Back button to return to the scanner and connect to the device.
The device name will have changed to ATCdfu.

	Click Do DFU Update.

	Click Select DFU file and select FitBootloaderDFU2.0.1.zip, then wait
for the payload to transfer and the update to take place. The watch should
be showing a single red square which is captioned ATCnetz.de.

	Click Select DFU file again and select
bootloader-daflasher.zip. Once the update is complete the watch will
show the wasp-os logo and some additional on-screen prompt.

It is important to ensure that both bootloader-daflasher.zip
and micropython.zip match the device you are installing for. There are
no runtime compatibility checks.

An end-to-end video of the above process (and the final install of wasp-
os) is also available:

[image: Installing MicroPython on a Colmi P8 smart watch using DaFlasher]
 [https://www.youtube.com/watch?v=VJoDtMy-4pk]Installing MicroPython on a Colmi P8 smart watch using DaFlasher [https://www.youtube.com/watch?v=VJoDtMy-4pk]

Warning

The first step cannot be reversed. Once DaFitBootloader23Hacked.bin
has been installed the factory firmware will be permanently removed
from the device.

Although it is not possible to restore the factory firmware it is
possible to switch back to Softdevice 5.0.1 and/or Softdevice 2.0.1
on order to run alternative firmwares such as
ATCwatch [https://github.com/atc1441/ATCwatch]. The zip updates
in DaFlasherFiles [https://github.com/atc1441/DaFlasherFiles] cannot
be applied directly but we can return to the DaFlasher bootloaders
by installing
DS-D6-adafruit-back-to-desay-sd132v201.zip [https://github.com/fanoush/ds-d6/blob/master/micropython/DS-D6-adafruit-back-to-desay-sd132v201.zip]
followed by
ATCdfuFromSD2toSD5.zip [https://github.com/atc1441/DaFlasherFiles/blob/master/ATCdfuFromSD2toSD5.zip]

Using an SWD programmer

There are many different SWD programmers that can be used to install
wasp-bootloader. Use the
PineTime SWD programming guide [https://wiki.pine64.org/index.php/Reprogramming_the_PineTime]
to lookup the specific instructions for your programmer.

Use the SWD programmer to install bootloader.hex to the device.
This file is an Intel HEX file containing both the bootloader and the Nordic
SoftDevice. Once the bootloader is installed the watch will boot, display a
logo and wait for a OTA update.

Note

If you have a new device then it may have been delivered with flash
protection enabled. You must disable the flash protection before trying to
program it.

Be careful to disconnect cleanly from the debug software since just pulling
out the SWD cable will mean the nRF52 will still believe it is being
debugged (which harms battery life because the device won’t properly enter
deep sleep states).

Installing wasp-os

nRF Connect for Android

To install the main firmware using nRF Connect for Android:

	Copy micropython.zip (see Building wasp-os from source) to
your Android device and download
nRF Connect [https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp]
for Android if you do not already have it.

	Connect to the device (e.g. PineDFU if you have a PineTime) using
nRFConnect, click the DFU button and send micropython.zip to the device.

	When the upload is complete the watch will reboot and launch the digital
clock application.

DaFlasher for Android

To install the main firmware using DaFlasher for Android:

	Copy micropython.zip (see Building wasp-os from source) to
your Android device and download
DaFlasher [https://play.google.com/store/apps/details?id=com.atcnetz.paatc.patc]
if you do not already have it.

	Open the app and connect to the device (e.g. PineDFU if you have a
PineTime).

	Click Do DFU Update.

	Click Select DFU file and select micropython.zip.

	When the upload is complete the watch will reboot and launch the digital
clock application.

wasptool for GNU/Linux

To install the main firmware from a GNU/Linux workstation:

	Look up the MAC address for your watch (try: sudo hcitool lescan).

	Use ota-dfu to upload micropython.zip (see
Building wasp-os from source) to the device. For example:
tools/ota-dfu/dfu.py -z micropython.zip -a A0:B1:C2:D3:E3:F5 --legacy

Troubleshooting

There are three boot modes of the device: OTA update mode, safe mode and normal
operation. Understanding these modes is useful to help troubleshoot
installation and boot problems.

OTA update mode

Bootloader mode is entered automatically of the boot image is invalid or if the
watchdog fires when running in another operating mode. OTA update mode can also
be can also be entered manually by holding a physical button on the device for
five seconds until the boot logo re-appears. When running in OTA update
mode pressing the physical button will attempt to launch the application.

Note

To remain in OTA update mode it is import to release the button as
soon as the boot logo appears otherwise you may acidentally request
the bootloader restart the application!

When the bootloader starts it will display a boot logo for two seconds and will
then either boot the application or enter OTA update mode. OTA update mode
is easily recognised by the Bluetooth logo in the bottom right hand corner of
the display.

[image: Bootloader splash screen overlaid on the simulator watch art]
When the device is in OTA update mode then it will enumerate with a name
ending in DFU (Device Firmware Update). This device can be used to
update the application image.

Safe mode

Safe mode is a special boot mode of the application that does not execute
main.py automatically (and hence that the watch will not fully boot).
This ensures the Python REPL is accessible for debugging. Safe mode also
causes the watch to show it’s boot activity on the screen which can be
useful for fixing hardware problems.

Safe mode is entered if the physical button is held down when the boot
logo disappears and the application first starts. The simplest way to
enter safe mode is to hold down the physical button until Init button
appear on the screen, then release it.

A device running in safe mode will display the message Safe mode
on the display. To exit safe mode return to OTA update mode by
holding down the physical button for five seconds and from there
a short press of the button will return the device to Normal operation.

Normal operation

Underneath the covers normal operation is near identical to safe mode. There
are only two differences:

	the boot messages will not appear unless a fault is detected (in which
case FAILED will appear on the display)

	it will execute whatever it finds in /flash/main.py

A default version of main.py is installed automatically when wasp-os initially
formats the external flash as a file system.

Most problems with normal mode operation occur either because main.py is
missing, out-of-date or corrupt. These issues most commonly result in an
entirely black screen when running the watch is running in normal mode.

Note

If the system reports FAILED at boot, in either safe mode or normal
operation, then the best troubleshooting approach is to review
the issue tracker [https://github.com/daniel-thommpson/wasp-os/issues].
Initially look through the open issues and see if your problem is similar,
if so there may be useful advice in the comments on the ticket. Otherwise
if you cannot find anything similar then please raise a new issue.

main.py

By default main.py includes the following commands and, in normal operation,
these will be executed to boot the watch:

SPDX-License-Identifier: LGPL-3.0-or-later
Copyright (C) 2020 Daniel Thompson

import wasp
from gadgetbridge import *
wasp.system.schedule()

One of the most powerful troubleshooting techniques (and one that is usually
effective in debugging “black screen” issues) is to switch to safe mode and
run the contents of main.py by hand using a bluetooth console (typically
either wasptool --console or an Android tool such as Serial Bluetooth
Terminal). Either the watch will start running when started by hand or it will
issue diagnostics via the console which can be captured and shared via the
issue tracker [https://github.com/daniel-thommpson/wasp-os/issues].

If the watch can be successfully started by hand then it is likely the copy
of main.py on your watch is broken, missing or out of date. You can explore
the watch’s filesystem using the shell module:

from shell import *
cd('/flash')
ls
cat('main.py')

If your copy of main.py needs to be updated you can use wasptool
to upload a new version:

tools/wasptool --upload wasp/main.py

Note

If you are not able to run wasptool on your system but have another means
to access to the python REPL you can also use shell.upload() to
manually upload a new version of main.py.

Application Library

	Built-in

	Watch faces

	Fibonacci clock

	Games

	Conway’s Game of Life

	Integration

	Music Player for GadgetBridge

Built-in

The built-in application are summarised below but because these apps are
treated as examples they are described in detail as part of the
Wasp-os Reference Manual:

	ClockApp

	FlashlightApp

	LauncherApp

	PagerApp

	TestApp

	TemplateApp`

Watch faces

Fibonacci clock

The Fibonacci sequence is a sequence of numbers created by the Italian
mathematician Fibonacci in the 13th century. This is a sequence starting with
1 and 1, where each subsequent number is the sum of the previous two. For the
clock I used the first 5 terms: 1, 1, 2, 3 and 5.

[image: _images/FiboApp.png]
Screenshot of the fibonacci clock application

The screen of the clock is made up of five squares whose side lengths match
the first five Fibonacci numbers: 1, 1, 2, 3 and 5. The hours are displayed
using red and the minutes using green. When a square is used to display both
the hours and minutes it turns blue. White squares are ignored.

To tell time on the Fibonacci clock you need to do some calculations. To read
the hour, simply add up the corresponding values of the red and blue squares.
To read the minutes, do the same with the green and blue squares. The minutes
are displayed in 5 minute increments (0 to 12) so you have to multiply your
result by 5 to get the actual number.

This app is enabled by default in the simulator.
The app is also frozen into the firmware image but it is disabled by
default in order to keep RAM available for user developed applications.
It can be enabled by modifying main.py.

Games

Conway’s Game of Life

The Game of Life is a “no player game” played on a two dimensional grid
where the rules interact to make interesting patterns.

[image: _images/LifeApp.png]
Screenshot of the Game of Life application

The game is based on four simple rules:

	Death by isolation: a cell dies if has fewer than two live neighbours.

	Death by overcrowding: a cell dies if it has more than three live
neighbours.

	Survival: a living cell continues to survive if it has two or three
neighbours.

	Reproduction: a dead cell comes alive if it has exactly three
neighbours.

On 11 April 2020 John H. Conway who, among many, many other
achievements, devised the rule set for his Game of Life, died of
complications from a COVID-19 infection.

The Game of Life is the first “toy” program I ever recall seeing on a
computer (running in a mid 1980s Apple Macintosh). It sparked something
even if “toy” is perhaps an underwhelming description of the Game of Life.
Either way it occupies a special place in my childhood. For that, this
application is dedicated to Professor Conway.

This app is enabled by default in the simulator.
The app is also frozen into the firmware image but it is disabled by
default in order to keep RAM available for user developed applications.
It can be enabled by modifying main.py.

Integration

Music Player for GadgetBridge

[image: _images/MusicApp.png]
Screenshot of the Music Player application

Music Player Controller:

	Touch: play/pause

	Swipe UPDOWN: Volume down/up

	Swipe LEFTRIGHT: next/previous

This app is enabled by default in the simulator.
The app is also frozen into the firmware image but it is disabled by
default in order to keep RAM available for user developed applications.
It can be enabled by modifying main.py.

Application Writer’s Guide

	Introduction

	Hello World for wasp-os

	Application life-cycle

	API primer

	System management

	Drawing

	MicroPython

	How to run your application

	Testing on the simulator

	Testing on the device

	Making it permanent

	Freezing your application into the wasp-os binary

	Application entry points

Introduction

Wasp-os, the Watch Application System in Python, has one pervasive goal that
influences almost everything about it, from its name to its development
roadmap: make writing applications easy (and fun).

Applications that can be loaded, changed, adapted and remixed by the user
are what really distinguishes a smart watch from a “feature watch”1.
In other words if we want a watch built around a tiny microcontroller to be
“smart” then it has to be all about the applications.

This guide will help you get started writing applications for wasp-os. Have fun!

	1

	The fixed function mobile phones that existed before iOS and Android
took over the industry were retrospectively renamed “feature phones” to
distinguish them from newer devices. Many of them were superficially similar
to early Android devices but is was the application ecosystem that really
made smart phones into what they are today.

Hello World for wasp-os

Let’s start by examining a simple “Hello, World!” application for wasp-os.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	# SPDX-License-Identifier: MY-LICENSE
Copyright (C) YEAR(S), AUTHOR

import wasp

class HelloApp():
 """A hello world application for wasp-os."""
 NAME = "Hello"

 def __init__(self, msg="Hello, world!"):
 self.msg = msg

 def foreground(self):
 self._draw()

 def _draw(self):
 draw = wasp.watch.drawable
 draw.fill()
 draw.string(self.msg, 0, 108, width=240)

Some of the key points of interest in this example application are:

	Applications have a NAME, which is shown in the
launcher. Most applications also provide an ICON
but a default will be displayed if this is omitted.

	This example uses __init__() to initialize
the state of the application, these variables are used to remember
the state of the application when when it is deactivated.

	foreground() is the only mandatory application entry
point and it is responsible for redrawing the screen. This application does
not implement background() because there is nothing
for us to do!

	The use of _draw() is optional. We could just do
the work in foreground() but this application follows
a common wasp-os idiom that is normally used to pattern to distinguish a full
refresh of the screen from an fast update (a redraw).

Application life-cycle

Applications in wasp-os are triggered by and do all their processing
from calls their entry points. The entry points can be coarsely categorized
event notifications, timer callbacks (the application tick) and
system actions.

System actions control the application life-cycle and that lifecyle is
shown below. The system actions are used to tell the application about
any change in its lifecycle.

[image: digraph lifecycle { START -> BACKGROUND [label=" __init__() "]; BACKGROUND -> START [label=" __del__() "]; BACKGROUND -> ACTIVE [label=" foreground() "]; ACTIVE -> BACKGROUND [label=" background() "]; ACTIVE -> GO_TO_CLOCK [label=" sleep() -> False "]; GO_TO_CLOCK -> BACKGROUND [label=" background() "]; ACTIVE -> SLEEPING [label=" sleep() -> True "]; SLEEPING -> ACTIVE [label=" wake() "]; START [shape=box]; BACKGROUND [shape=box, style=rounded] ACTIVE [shape=box, style=rounded] SLEEPING [shape=box, style=rounded] GO_TO_CLOCK [label="GOTO ClockApp"]; }]

When an application is initialized is enters the BACKGROUND state. A
backgrounded application will not execute but it should nevertheless
maintain its user visible state whilst deactivated. To conserve
memory wasp-os does not permit two applications to run simultaneously but
because each application remembers its state when it is not running then it
will appear to the user as though all applications are running all the time.

For example, a stopwatch application should record the time that it was started
and remember that start time, regardless of whether it is running or not so
that when it restarted is can continue to run as the user expects.

A backgrounded application enters the ACTIVE state via a call to
foreground(). When it is active the application owns the
screen and must draw and maintain its user interface.

If the system manager wants to put the watch to sleep then it will tell the
active application to sleep().
If the application returns True then the application will remain active
whilst the watch is asleep.
It will receive no events nor the application tick whilst the system is
asleep and, instead, must wait for a wake() notification
telling the application that the device is waking up and that it may
update the screen if needed.

If an application does not support sleeping then it can simply not implement
sleep() or wake().
In this case the system manager will automatically return to the default
application, typically the main clock face.

Some applications may support sleeping only under certain circumstances. For
example a stopwatch may choose to remain active when the watch sleeps only if
the stopwatch is running.
This type of application must implement sleep() and
return False when it does not want to remain active when the system
resumes.

Note

Most applications should not implement sleep()
since it is often a better user experience for the watch to return to the
default application when they complete an interaction.

API primer

This API primer introduces some of the most important and frequently used
interfaces in wasp-os. For more comprehensive coverage see the
Wasp-os Reference Manual which contains extensive API documentation
covering the entire of wasp-os, including its drivers.

System management

The system management API provides a number of low-level calls that
can register new applications and navigate between them. However most
applications do not need to make these low level calls and will use
a much smaller set of methods.

Applictions must call a couple of functions from their
foreground() in order to register for
event notifications and timer callbacks:

	request_event() - register for UI events such as button
presses and touch screen activity.

	request_tick() - register to receive an application tick
and specify the tick frequency.

Additionally if your application is a game or a similar program that should
not allow the watch to go to sleep when it is running then it should
arrange to call keep_awake() from the application’s
tick() method.

Drawing

Most applications using the drawing toolbox, wasp.watch.drawable,
in order to handle the display. Applications are permitted to directly access
wasp.watch.display if they require direct pixel access or want to
exploit specific features of the display hardware (inverse video, partial
display, etc) but for most applications the drawing toolbox provides
convenient and optimized drawing functions.

	blit() - blit an image to the display at specified (x, y)
coordinates, image type is detected automatically

	fill() - fill a rectangle, without arguments the default
is a black rectangle covering the entire screen which is useful to clear
the screen prior to an update

	string() - render a string, optionally centring it
automatically

	wrap() - automatically determine where to break a string
so it can be rendered to a specified width

Most applications run some variant of the following code from their
foreground() or _draw() methods
in order to clear the display ready for a redraw.

draw = wasp.watch.drawable
draw.fill()
now use draw to render the rest of the screen

Some applications customize the above code slightly if they require a custom
background colour and it may even be omitted entirely if the application
explicitly draws every pixel on the display.

Finally, wasp-os provides a small number of widgets that allow common fragments
of logic and redrawing code to be shared between applications:

	BatteryMeter

	ScrollingIndicator

MicroPython

Many of the features of wasp-os are inherited directly from MicroPython [https://micropython.org/]. It is
useful to have a basic understanding of MicroPython and, in particular, put
a little time into learning the best practices when running
MicroPython on microcontrollers [http://docs.micropython.org/en/latest/reference/constrained.html].

How to run your application

Testing on the simulator

wasp-os includes a simulator that can be used to test applications before
downloading them to the device. The simulator is useful for ensuring the
code is syntactically correct and that there are not major runtime problems
such as misspelt symbol names.

Note

The simulator does not model the RAM or code size limits of the real
device. It may still be necessary to tune the application for minimal
footprint after testing on the simulator.

To launch the simulator:

sh$ make sim
PYTHONDONTWRITEBYTECODE=1 PYTHONPATH=.:wasp/boards/simulator:wasp \\
python3 -i wasp/main.py
MOTOR: set on
BACKLIGHT: 2
Watch is running, use Ctrl-C to stop

From the simulator console we can register the application with the following
commands:

	1
2
3
4
5
6
7
8

	 ^C
 Traceback (most recent call last):
 ...
 KeyboardInterrupt
 >>> from myapp import MyApp
 >>> wasp.system.register(MyApp())
 >>> wasp.system.run()
 Watch is running, use Ctrl-C to stop

When an application is registered it does not start automatically but it will
have been added to the launcher and you will be able to select in the simulator
by swiping or using the Arrow keys to bring up the launcher and then clicking
on your application.

The application can also be registered automatically when you load the
simulator if you add it to wasp/main.py. Try adding lines 5 and 6 from
the above example into this file (between import wasp and
wasp.system.run()).

The simulator accepts gestures such as up/down and left/right swipes but the
simulator also accepts keystrokes for convenience. The arrow keys simulate
swipes and the Tab key simulates the physical button, whilst the ‘s’ key
can be used to capture screen shots to add to the documentation for your
application.

Testing on the device

When an application is under development it is best to temporarily load
your application without permanently stored on the device.
Providing there is enough available RAM then this can lead to a very quick
edit-test cycles.

Try:

sh$ tools/wasptool \\
 --exec myapp.py \\
 --eval "wasp.system.register(MyApp())"
Preparing to run myapp.py:
[##] 100%

Like the simulator, when an application is registered it is added to the
launcher and it does not start automatically.

Note

If the progress bar jams at the same point each time then it is likely your
application is too large to be compiled on the target. You may have to
adopt the frozen module approach from the next section.

To remove the application simply reboot the watch by pressing and
holding the physical button until the watch enters OTA mode (this
takes around five seconds). Once the watch is in OTA mode then
press the phyiscal button again to return to normal mode with the
application cleared out.

Making it permanent

To ensure you application survives a reboot then we must copy it to the
device and ensure it gets launched during system startup.

Note

Applications stored in external FLASH have a greater RAM overhead than
applications that are frozen into the wasp-os binary. If you app does
not fix then see next section for additional details on how to embed
your app in the wasp-os binary itself..

To copy your application to the external FLASH try:

sh$./tools/wasptool --upload myapp.py
Uploading myapp.py:
[##] 100%

At this point your application is stored on the external FLASH but it will
not automatically be loaded. This requires you to update the main.py file
stored in the external FLASH. When wasp-os runs for the first time it
automatically generates this file (using wasp/main.py as a template)
and copies it to the external FLASH. After this point main.py is user
modifiable and can be used to tweak the configuration of the watch before
it starts running.

Edit wasp/main.py to add the following two lines between import wasp
and the wasp.system.run():

from myapp import MyApp
wasp.system.register(MyApp())

Having done that we can use wasptool to upload the modified file
to the watch:

sh$./tools/wasptool --upload wasp/main.py
Uploading wasp/main.py:
[##] 100%

Note

If the new code on the watch throws an exception (including an
out-of-memory exception) then your watch will display a black screen at
startup. If that happens, and you don’t know how to debug the problem, then
you can use wasptool to restore the original version of main.py .

Freezing your application into the wasp-os binary

Freezing your application causes it to consume dramatically less RAM. That is
because they can execute directly from the internal FLASH rather than running
from RAM. Additionally the code is pre-compiled, which also means we don’t
need any RAM budget to run the compiler.

Freezing your application requires you to modify the manifest.py
file for your board (e.g. wasp/boards/pinetime/manifest.py) to include
your application and then the whole binary must be re-compiled as normal.

After that you an use the same technique described in the previous
section to add an import and register for you application from main.py

Note

The micropython import path “prefers” frozen modules to those found in the
external filesystem. If your application is both frozen and copied to
external FLASH then the frozen version will be loaded.

In many cases it is possible to avoid rebuilding the binary in order to
test new features by directly parsing the code in the global
namespace (e.g. using wasptool --exec rather than wasptool --upload
combined with import). With the code in the global namespace it can
then be patched into the system. For example the following can be used
to adopt a new version of the CST816S driver:

Application entry points

Applications provide entry points for the system manager to use to notify
the application of a change in system state or an user interface event.

The complete set of wasp-os application entry points are documented
below as part of a template application. Note that the template does
not rely on any specific parent class. This is because applications in
wasp-os can rely on duck typing making a class hierarchy pointless.

	
class apps.template.TemplateApp

	Template application.

The template application includes every application entry point. It
is used as a reference guide and can also be used as a template for
creating new applications.

	
NAME = 'Template'

	Applications must provide a short NAME that is used by the
launcher to describe the application. Names that are longer than
8 characters are likely to be abridged by the launcher in order
to fit on the screen.

	
ICON = RLE2DATA

	Applications can optionally provide an icon for display by the
launcher. Applications that expect to be installed on the quick
ring will not be listed by the launcher and need not provide any
icon. When no icon is provided the system will use a default
icon.

The icon is an opportunity to differentiate your application from others
so supplying an icon is strongly recommended. The icon, when provided,
must not be larger than 96x64.

	
__init__()

	Initialize the application.

	
__weakref__

	list of weak references to the object (if defined)

	
_draw()

	Draw the display from scratch.

	
_update()

	Update the dynamic parts of the application display.

	
background()

	De-activate the application.

	
foreground()

	Activate the application.

	
press(button, state)

	Notify the application of a button-press event.

	
sleep()

	Notify the application the device is about to sleep.

	
swipe(event)

	Notify the application of a touchscreen swipe event.

	
tick(ticks)

	Notify the application that its periodic tick is due.

	
touch(event)

	Notify the application of a touchscreen touch event.

	
wake()

	Notify the application the device is waking up.

Wasp-os Reference Manual

	System

	Wasp-os system manager

	Watch driver instances

	RGB565 drawing library

	Widget library

	Device drivers

	Generic lithium ion battery driver

	Hynitron CST816S touch contoller driver

	nRF-family RTC driver

	Inverting pin wrapper

	Sitronix ST7789 display driver

	Generic PWM capable vibration motor driver

	Applications

	Digital clock

	Flashlight

	Application launcher

	Pager applications

	Self Tests

	Bootloader

	GPREGRET protocol

	PNVRAM protocol

	Watchdog protocol

System

Wasp-os system manager

	
wasp.system

	wasp.system is the system-wide singleton instance of Manager.
Application must use this instance to access the system services provided
by the manager.

	
wasp.watch

	wasp.watch is an import of watch and is simply provided as a
shortcut (and to reduce memory by keeping it out of other namespaces).

	
class wasp.EventMask

	Enumerated event masks.

	
class wasp.EventType

	Enumerated interface actions.

MicroPython does not implement the enum module so EventType
is simply a regular object which acts as a namespace.

	
class wasp.Manager

	Wasp-os system manager

The manager is responsible for handling top-level UI events and
dispatching them to the foreground application. It also provides
services to the application.

The manager is expected to have a single system-wide instance
which can be accessed via wasp.system .

	
brightness

	Cached copy of the brightness current written to the hardware.

	
cancel_alarm(time, action)

	Unqueue an alarm.

	
keep_awake()

	Reset the keep awake timer.

	
navigate(direction=None)

	Navigate to a new application.

Left/right navigation is used to switch between applications in the
quick application ring. Applications on the ring are not permitted
to subscribe to :py:data`EventMask.SWIPE_LEFTRIGHT` events.

Swipe up is used to bring up the launcher. Clock applications are not
permitted to subscribe to :py:data`EventMask.SWIPE_UPDOWN` events since
they should expect to be the default application (and is important that
we can trigger the launcher from the default application).

	Parameters

	direction (int) – The direction of the navigation

	
register(app, quick_ring=False)

	Register an application with the system.

	Parameters

	app (object) – The application to regsister

	
request_event(event_mask)

	Subscribe to events.

	Parameters

	event_mask (int) – The set of events to subscribe to.

	
request_tick(period_ms=None)

	Request (and subscribe to) a periodic tick event.

Note: With the current simplistic timer implementation sub-second
tick intervals are not possible.

	
run(no_except=True)

	Run the system manager synchronously.

This allows all watch management activities to handle in the
normal execution context meaning any exceptions and other problems
can be observed interactively via the console.

	
schedule(enable=True)

	Run the system manager synchronously.

	
set_alarm(time, action)

	Queue an alarm.

	Parameters

	
	time (int) – Time to trigger the alarm (use time.mktime)

	action (function) – Action to perform when the alarm expires.

	
sleep()

	Enter the deepest sleep state possible.

	
switch(app)

	Switch to the requested application.

	
wake()

	Return to a running state.

	
class wasp.PinHandler(pin)

	Pin (and Signal) event generator.

TODO: Currently this driver doesn’t actually implement any
debounce but it will!

	
get_event()

	Receive a pin change event.

Check for a pending pin change event and, if an event is pending,
return it.

	Returns

	boolean of the pin state if an event is received, None
otherwise.

Watch driver instances

	
watch.backlight

	Backlight driver, typically a board specific driver with a single
set() method.

	
watch.battery

	Battery driver, typically the generic metering driver,
drivers.battery.Battery.

	
watch.button

	An instance of machine.Pin (or a signal) that an application can use
to poll the state of the hardware button.

	
watch.display

	Display driver, typically drivers.st7789.ST7789_SPI.

	
watch.drawable

	Drawing library for watch.display. It will be adapted to match the
bit depth of the display, draw565.Draw565 for example.

	
watch.rtc

	RTC driver, typically drivers.nrf_rtc.RTC.

	
watch.touch

	Touchscreen driver, for example drivers.cst816s.CST816S.

	
watch.vibrator

	Vibration motor driver, typically drivers.vibrator.Vibrator.

RGB565 drawing library

	
class draw565.Draw565(display)

	Drawing library for RGB565 displays.

A full framebufer is not required although the library will
‘borrow’ a line buffer from the underlying display driver.

	
__init__(display)

	Initialise the library.

Defaults to white-on-black for monochrome drawing operations
and 24pt Sans Serif text.

	
blit(image, x, y, fg=65535, c1=19049, c2=31727)

	Decode and draw an encoded image.

	Parameters

	
	image – Image data in either 1-bit RLE or 2-bit RLE formats. The
format will be autodetected

	x – X coordinate for the left-most pixels in the image

	y – Y coordinate for the top-most pixels in the image

	
fill(bg=None, x=0, y=0, w=None, h=None)

	Draw a solid colour rectangle.

If no arguments a provided the whole display will be filled with
the background colour (typically black).

	Parameters

	
	bg – Background colour (in RGB565 format)

	x – X coordinate of the left-most pixels of the rectangle

	y – Y coordinate of the top-most pixels of the rectangle

	w – Width of the rectangle, defaults to None (which means select
the right-most pixel of the display)

	h – Height of the rectangle, defaults to None (which means select
the bottom-most pixel of the display)

	
reset()

	Restore the default colours and font.

Default colours are white-on-block (white foreground, black
background) and the default font is 24pt Sans Serif.

	
rleblit(image, pos=(0, 0), fg=65535, bg=0)

	Decode and draw a 1-bit RLE image.

Deprecated since version M2: Use blit() instead.

	
set_color(color, bg=0)

	Set the foreground and background colours.

The supplied colour will be used for all monochrome drawing operations.
If no background colour is provided then the background will be set
to black.

	Parameters

	
	color – Foreground colour

	bg – Background colour, defaults to black

	
set_font(font)

	Set the font used for rendering text.

	Parameters

	font – A font module generated using font_to_py.py.

	
string(s, x, y, width=None)

	Draw a string at the supplied position.

	Parameters

	
	s – String to render

	x – X coordinate for the left-most pixels in the image

	y – Y coordinate for the top-most pixels in the image

	width – If no width is provided then the text will be left
justified, otherwise the text will be centred within the
provided width and, importantly, the remaining width will
be filled with the background colour (to ensure that if
we update one string with a narrower one there is no
need to “undraw” it)

	
wrap(s, width)

	Chunk a string so it can rendered within a specified width.

Example:

draw = wasp.watch.drawable
chunks = draw.wrap(long_string, 240)

line(1) will provide the first line
line(len(chunks)-1) will provide the last line
def line(n):
 return long_string[chunks[n-1]:chunks[n]]

	Parameters

	
	s – String to be chunked

	width – Width to wrap the text into

	Returns

	List of chunk boundaries

Widget library

The widget library allows common fragments of logic and drawing code to be
shared between applications.

	
class widgets.BatteryMeter

	Battery meter widget.

A simple battery meter with a charging indicator, will draw at the
top-right of the display.

	
draw()

	Draw from meter (from scratch).

	
update()

	Update the meter.

The update is lazy and won’t redraw unless the level has changed.

	
class widgets.Clock(enabled=True)

	Small clock widget.

	
draw()

	Redraw the clock from scratch.

The container is required to clear the canvas prior to the redraw
and the clock is only drawn if it is enabled.

	
update()

	Update the clock widget if needed.

This is a lazy update that only redraws if the time has changes
since the last call and the clock is enabled.

	Returns

	An time tuple if the time has changed since the last call,
None otherwise.

	
class widgets.NotificationBar(x=2, y=8)

	Show BT status and if there are pending notifications.

	
draw()

	Redraw the notification widget.

For this simple widget draw() is simply a synonym for
update() because we unconditionally update from scratch.

	
update()

	Update the widget.

This widget does not implement lazy redraw internally since this
can often be implemented (with less state) by the container.

	
class widgets.ScrollIndicator(x=222, y=216)

	Scrolling indicator.

A pair of arrows that prompted the user to swipe up/down to access
additional pages of information.

	
draw()

	Draw from scrolling indicator.

For this simple widget draw() is simply a synonym for
update().

	
update()

	Update from scrolling indicator.

	
class widgets.Slider(steps, x=10, y=90, color=14847)

	A slider to select values.

	
draw()

	Draw the slider.

	
class widgets.StatusBar

	Combo widget to handle notification, time and battery level.

	
clock

	True if the clock should be included in the status bar, False
otherwise.

	
draw()

	Redraw the status bar from scratch.

	
update()

	Lazily update the status bar.

	Returns

	An time tuple if the time has changed since the last call,
None otherwise.

Device drivers

Generic lithium ion battery driver

	
class drivers.battery.Battery(battery, charging, power=None)

	Generic lithium ion battery driver.

	
__init__(battery, charging, power=None)

	Specify the pins used to provide battery status.

	Parameters

	
	battery (Pin) – The ADC-capable pin that can be used to measure
battery voltage.

	charging (Pin) – A pin (or Signal) that reports the charger status.

	power (Pin) – A pin (or Signal) that reports whether the device
has external power, defaults to None (which means
use the charging pin for power reporting too).

	
charging()

	Get the charging state of the battery.

	Returns

	True if the battery is charging, False otherwise.

	
level()

	Estimate the battery level.

The current the estimation approach is extremely simple. It is assumes
the discharge from 4v to 3.5v is roughly linear and 4v is 100% and
that 3.5v is 5%. Below 3.5v the voltage will start to drop pretty
sharply to we will drop from 5% to 0% pretty fast… but we’ll
live with that for now.

	Returns

	Estimate battery level in percent.

	
power()

	Check whether the device has external power.

	Returns

	True if the device has an external power source, False
otherwise.

	
voltage_mv()

	Read the battery voltage.

Assumes a 50/50 voltage divider and a 3.3v power supply

	Returns

	Battery voltage, in millivolts.

Hynitron CST816S touch contoller driver

	
class drivers.cst816s.CST816S(bus, intr, rst, schedule=None)

	Hynitron CST816S I2C touch controller driver.

	
__init__(bus, intr, rst, schedule=None)

	Specify the bus used by the touch controller.

	Parameters

	bus (machine.I2C) – I2C bus for the CST816S.

	
get_event()

	Receive a touch event.

Check for a pending touch event and, if an event is pending,
prepare it ready to go in the event queue.

	Returns

	An event record if an event is received, None otherwise.

	
get_touch_data(pin_obj)

	Receive a touch event by interrupt.

Check for a pending touch event and, if an event is pending,
prepare it ready to go in the event queue.

	
reset_touch_data()

	Reset touch data.

Reset touch data, call this function after processing an event.

	
sleep()

	Put touch controller chip on sleep mode to save power.

	
wake()

	Wake up touch controller chip.

Just reset the chip in order to wake it up

nRF-family RTC driver

	
class drivers.nrf_rtc.RTC(counter)

	Real Time Clock based on the nRF-family low power counter.

	
__init__(counter)

	Wrap an RTCounter to provide a fully fledged Real Time Clock.

If the PNVRAM is valid then we use it to initialize the RTC otherwise
we just make something up.

	Parameters

	counter (RTCounter) – The RTCCounter channel to adopt.

	
get_localtime()

	Get the current time and date.

	Returns

	Wall time formatted as (yyyy, mm, dd, HH, MM, SS, wday, yday)

	
get_time()

	Get the current time.

	Returns

	Wall time formatted as (HH, MM, SS)

	
get_uptime_ms()

	Return the current uptime in milliseconds.

	
set_localtime(t)

	Set the current wall time.

	Parameters

	t (sequence) – Wall time formatted as (yyyy, mm, dd, HH, MM, SS), any
additional elements in sequence will be ignored.

	
time()

	Get time in the same format as time.time

	
update()

	Check for counter updates.

	Returns

	True of the wall time has changed, False otherwise.

	
uptime

	Provide the current uptime in seconds.

Inverting pin wrapper

	
class drivers.signal.Signal(pin, invert=False)

	Simplified Signal class

Note

The normal C implementation of the Signal class used by MicroPython
doesn’t work on the nRF family. This class provides a temporary
workaround until that can be addressed.

	
__init__(pin, invert=False)

	Create a Signal object by wrapping a pin.

	
off()

	Deactivate the signal.

	
on()

	Activate the signal.

	
value(v=None)

	Get or set the state of the signal.

	Parameters

	v – Value to set, defaults to None (which means get the signal
state instead.

	Returns

	The state of the signal if v is None, otherwise None.

Sitronix ST7789 display driver

Note

Although the ST7789 supports a variety of communication protocols currently
this driver only has support for SPI interfaces. However it is structured
such that other serial protocols can easily be added.

	
class drivers.st7789.ST7789(width, height)

	Sitronix ST7789 display driver

	
__init__(width, height)

	Configure the size of the display.

	Parameters

	
	width (int) – Display width, in pixels

	height (int) – Display height in pixels

	
fill(bg, x=0, y=0, w=None, h=None)

	Draw a solid colour rectangle.

If no arguments a provided the whole display will be filled with
the background colour (typically black).

	Parameters

	
	bg – Background colour (in RGB565 format)

	x – X coordinate of the left-most pixels of the rectangle

	y – Y coordinate of the top-most pixels of the rectangle

	w – Width of the rectangle, defaults to None (which means select
the right-most pixel of the display)

	h – Height of the rectangle, defaults to None (which means select
the bottom-most pixel of the display)

	
init_display()

	Reset and initialize the display.

	
invert(invert)

	Invert the display.

	Parameters

	invert (bool) – True to invert the display, False for normal mode.

	
mute(mute)

	Mute the display.

When muted the display will be entirely black.

	Parameters

	mute (bool) – True to mute the display, False for normal mode.

	
poweroff()

	Put the display into sleep mode.

	
poweron()

	Wake the display and leave sleep mode.

	
rawblit(buf, x, y, width, height)

	Blit raw pixels to the display.

	Parameters

	
	buf – Pixel buffer

	x – X coordinate of the left-most pixels of the rectangle

	y – Y coordinate of the top-most pixels of the rectangle

	w – Width of the rectangle, defaults to None (which means select
the right-most pixel of the display)

	h – Height of the rectangle, defaults to None (which means select
the bottom-most pixel of the display)

	
set_window(x=0, y=0, width=None, height=None)

	Set the clipping rectangle.

All writes to the display will be wrapped at the edges of the rectangle.

	Parameters

	
	x – X coordinate of the left-most pixels of the rectangle

	y – Y coordinate of the top-most pixels of the rectangle

	w – Width of the rectangle, defaults to None (which means select
the right-most pixel of the display)

	h – Height of the rectangle, defaults to None (which means select
the bottom-most pixel of the display)

	
class drivers.st7789.ST7789_SPI(width, height, spi, cs, dc, res=None, rate=8000000)

	
	
quick_write(buf)

	Send data to the display as part of an optimized write sequence.

	Parameters

	buf (bytearray) – Data, must be in a form that can be directly
consumed by the SPI bus.

	
quick_end()

	Complete an optimized write sequence.

	
quick_start()

	Prepare for an optimized write sequence.

Optimized write sequences allow applications to produce data in chunks
without having any overhead managing the chip select.

	
reset()

	Reset the display.

Uses the hardware reset pin if there is one, otherwise it will issue
a software reset command.

	
write_cmd(cmd)

	Send a command opcode to the display.

	Parameters

	cmd (sequence) – Command, will be automatically converted so it can
be issued to the SPI bus.

	
write_data(buf)

	Send data to the display.

	Parameters

	buf (bytearray) – Data, must be in a form that can be directly
consumed by the SPI bus.

Generic PWM capable vibration motor driver

	
class drivers.vibrator.Vibrator(pin, active_low=False)

	Vibration motor driver.

	
__init__(pin, active_low=False)

	Specify the pin and configuration used to operate the motor.

	Parameters

	
	pin (machine.Pin) – The PWM-capable pin used to driver the
vibration motor.

	active_low (bool) – Invert the resting state of the motor.

	
pulse(duty=25, ms=40)

	Briefly pulse the motor.

	Parameters

	
	duty (int) – Duty cycle, in percent.

	ms (int) – Duration, in milliseconds.

Applications

Digital clock

Shows a time (as HH:MM) together with a battery meter and the date.

	
class apps.clock.ClockApp

	Simple digital clock application.

[image: _images/ClockApp.png]
Screenshot of the clock application

	
ICON = 'Default digital clock icon'

	

	
NAME = 'Clock'

	

	
foreground()

	Activate the application.

Configure the status bar, redraw the display and request a periodic
tick callback every second.

	
sleep()

	Prepare to enter the low power mode.

	Returns

	True, which tells the system manager not to automatically
switch to the default application before sleeping.

	
tick(ticks)

	Periodic callback to update the display.

	
wake()

	Return from low power mode.

Time will have changes whilst we have been asleep so we must
udpate the display (but there is no need for a full redraw because
the display RAM is preserved during a sleep.

Flashlight

Shows a pure white screen with the backlight set to maximum.

	
class apps.flashlight.FlashlightApp

	Trivial flashlight application.

[image: _images/TorchApp.png]
Screenshot of the flashlight application

	
ICON = 'Default torch or flashlight icon'

	

	
NAME = 'Torch'

	

	
background()

	De-activate the application (without losing state).

	
draw()

	Redraw the display from scratch.

	
foreground()

	Activate the application.

	
tick(ticks)

	

Application launcher

	
class apps.launcher.LauncherApp

	An application launcher application.

[image: _images/LauncherApp.png]
Screenshot of the application launcher

	
ICON = 'Default application icon'

	

	
NAME = 'Launcher'

	

	
foreground()

	Activate the application.

	
swipe(event)

	

	
touch(event)

	

Pager applications

The pager is used to present text based information to the user. It is
primarily intended for notifications but is also used to provide debugging
information when applications crash.

	
class apps.pager.CrashApp(exc)

	Crash handler application.

This application is launched automatically whenever another
application crashes. Our main job it to indicate as loudly as
possible that the system is no longer running correctly. This
app deliberately enables inverted video mode in order to deliver
that message as strongly as possible.

	
background()

	Restore a normal display mode.

Conceal the display before the transition otherwise the inverted
bombs get noticed by the user.

	
foreground()

	Indicate the system has crashed by drawing a couple of bomb icons.

If you owned an Atari ST back in the mid-eighties then I hope you
recognise this as a tribute a long forgotten home computer!

	
swipe(event)

	Show the exception message in a pager.

	
class apps.pager.NotificationApp

	
	
NAME = 'Notifications'

	

	
foreground()

	Activate the application.

	
class apps.pager.PagerApp(msg)

	Show a long text message in a pager.

	
ICON = 'Default application icon'

	

	
NAME = 'Pager'

	

	
background()

	De-activate the application.

	
foreground()

	Activate the application.

	
swipe(event)

	Swipe to page up/down.

Self Tests

	
class apps.testapp.TestApp

	Simple test application.

[image: _images/SelfTestApp.png]
Screenshot of the self test application

	
ICON = 'Default application icon'

	

	
NAME = 'Self Test'

	

	
foreground()

	Activate the application.

	
press(button, state)

	

	
swipe(event)

	

	
touch(event)

	

Bootloader

The bootloader implements a couple of protocols that allow the bootloader
and payload to communicate during a reset or on handover from bootloader
to application.

GPREGRET protocol

GPREGRET is a general purpose 8-bit retention register that is preserved
in all power states of the nRF52 (including System OFF mode when SRAM
content is destroyed).

It can be used by the application to request specific bootloader behaviours
during a reset:

	Name

	Value

	Description

	OTA_APPJUM

	0xb1

	Bootloader entered (without reset) from application.

	OTA_RESET

	0xa8

	Enter OTA (Bluetooth) recovery mode

	SERIAL_ONLY_RESET

	0x4e

	Enter UART recovery mode (if applicable)

	UF2_RESET

	0x57

	Enter USB recovery mode (if applicable)

	FORCE_APP_BOOT

	0x65

	Force direct application boot (no splash screen)

PNVRAM protocol

The pseudo non-volatile RAM is a small block of regular static RAM that,
once initialized, can be used to share information.

The PNVRAM starts at 0x200039c0 and is 32 bytes long.

	Address

	Description

	0x200039c0

	Guard value. Must be set to 0x1abe11ed .

	0x200039c4

	Course grained RTC value (bootloader must preserve but can ignore).

	0x200039c8

	RTC millisecond counter (bootloader must increment this).

	0x200039cc

	Reserved

	0x200039d0

	Reserved

	0x200039d4

	Reserved

	0x200039d8

	Reserved

	0x200039cc

	Guard value. Must be set to 0x10adab1e .

Note: The PNVRAM protocol allows up to 28 bytes to be transfered (compared to
2 bytes via GPREGRET and GPREGRET2) but it is less versatile. For example
FORCE_APP_BOOT cannot be implmented using PNVRAM.

The RTC millisecond counter is incremented whenever the bootloader is
active (during splash screen or early UART recovery mode, during an
update). It can be consumed by the application to prevent the current
time being lost during an update.

Watchdog protocol

Form-factor devices such as smart watches and fitness trackers do not usually
have any hardware mechanism to allow the user to force a failed device into
bootloader mode. This makes them difficult to develop on because opening the
case to access a SWD or reset pins may compromise their waterproofing.

wasp-os uses a watchdog timer (WDT) combined with a single hardware button in
order to provide a robust mechanism to allow the user to force entry into a
over-the-air firmware recovery mode that allows the buggy application to be
replaced.

The software responsibilities to implement this are split between the
bootloader and the application, although the application responsibilities
are intentionally minimal.

The bootloader implements an over-the-air recovery mode, as well as handling
normal boot, where it’s role is to display the splash screen.

Additionally the bootloader implements several watchdog related features
necessary for robust reboot handling:

	The bootloader configures the watchdog prior to booting the main
application. This is a simple, single channel reload request, watchdog
with a 5 second timeout.

	The bootloader checks the reset reason prior too booting the main
application. If it detects a watchdog reset the bootloader switches
automatically to DFU mode.

	The bootlaoder initialized the pinmux allowing the hardware button
state to be observed.

	The bootloader monitors the hardware button and switches back to the main
application when it is pressed.

From this list #1 and #2 are needed to ensure robust WDT handling whilst #3
and # 4 ensure the user can switch back to application from the device
itself if they ever accidentally trigger entry to recovery mode.

The application’s role is to carefully pet the watchdog so that it will
trigger automatically if the hardware button is held down for five
seconds. Key points for application robustness include:

	Unlike a normal watchdog we can be fairly reckless about where in the
code we pet the dog. For example petting the dog from a timer interrupt
is fine because we only need the dog to bark if the hardware button is
pressed.

	The routine to pet the dog is predicated on the hardware button not
being pressed.

	The routine to pet the dog is also predicated on the hardware button
still being correctly configured.

To avoid mistakes the application should contain no subroutines that
unconditionally pet the dog; they should all implement #2 and #3 from
the above list.

Note: nRF52 microcontrollers implement a distributed pin-muxing
mechanism meaning most peripheral can acidentally “steal” a pin
if the pin is requested by the peripheral. This requires a fully
robust implementation of #3 to visit the PSEL registers of every
peripheral that can control pins. The code currently used in
wasp-os does not yet meet this criteria.

Contributor’s Guide

	Introduction

	Developer Certificate of Origin

	Git Hints and Tricks

	Quick fixes

	Code of Conduct

	Our Pledge

	Our Standards

	Enforcement Responsibilities

	Scope

	Enforcement

	Enforcement Guidelines

	Attribution

Introduction

Anyone can contribute to the wasp-os project. Contributions are typically made
via github using the typical fork-and-pull-request approach. Contributors who
do not wish to use github are welcome to share patches using git
format-patch --to wasp-os@redfelineninja.org.uk and git send-email. In
both cases, the code will be reviewed by a project maintainer, so please
anticipate review comments and requests for changes. Typically pull
requests will not be merged if there are open questions or requests for
changes that have not been acted on.

All contributions must include a Signed-off-by tag added by the contributor
who submits the patch or patches. The Signed-off-by tag is added at the end
of the patch description and certifies that the contributor either wrote the
patch or has the right to share the code under the open source license
appropriate for the file being modified.

A Signed-off-by tag is an explicit statement that your contribution comes
under one of (a), (b), (c), or (d) from the list below so please be sure to
read carefully what you are certifying by adding your Signed-off-by.

Additionally please be aware that that contributors, like all other members of
the wasp-os community, are expected to meet the community guidelines described
in the project’s code of conduct when interacting within all community spaces
(including the wasp-os github presence).

Developer Certificate of Origin

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
1 Letterman Drive
Suite D4700
San Francisco, CA, 94129

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

(b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

(c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

(d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

This procedure is the same one used by the Linux kernel project. To sign off a
patch append an appropriate line at the end of the commit message:

Signed-off-by: Random Developer <r.developer@example.org>

Adding a sign-off can be automated by using git features such as
git commit --signoff. Please use your real name, anonymous and pseudonymous
contributions will not be accepted.

Git Hints and Tricks

Quick fixes

The most common review feedback for contributions to wasp-os is a request that
the contributor include their sign-off. For a single patch at the head of the
current branch (and shared as a github pull request) this can be handled fairly
easily:

git commit --amend --signoff
git push <myfork> HEAD

Additionally, please be aware that github will not send out automatic
notifications to let the maintainer know that you have pushed an update to the
pull-request. Follow up the above with a comment on the pull request thread
saying that your contribution has been updated and is ready for another look.

Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in
our community a harassment-free experience for everyone, regardless of
age, body size, visible or invisible disability, ethnicity, sex
characteristics, gender identity and expression, level of experience,
education, socio-economic status, nationality, personal appearance,
race, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open,
welcoming, diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our
community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our
mistakes, and learning from the experience

	Focusing on what is best not just for us as individuals, but for the
overall community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or
advances of any kind

	Trolling, insulting or derogatory comments, and personal or political
attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email
address, without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our
standards of acceptable behavior and will take appropriate and fair
corrective action in response to any behavior that they deem
inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other
contributions that are not aligned to this Code of Conduct, and will
communicate reasons for moderation decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also
applies when an individual is officially representing the community in
public spaces. Examples of representing our community include using an
official e-mail address, posting via an official social media account,
or acting as an appointed representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported to the community leaders responsible for enforcement at
wasp-os@redfelineninja.org.uk . All complaints will be reviewed and
investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security
of the reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in
determining the consequences for any action they deem in violation of
this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior
deemed unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders,
providing clarity around the nature of the violation and an explanation
of why the behavior was inappropriate. A public apology may be
requested.

2. Warning

Community Impact: A violation through a single incident or series of
actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, for a specified period of
time. This includes avoiding interactions in community spaces as well as
external channels like social media. Violating these terms may lead to a
temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards,
including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No
public or private interaction with the people involved, including
unsolicited interaction with those enforcing the Code of Conduct, is
allowed during this period. Violating these terms may lead to a
permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of
individuals.

Consequence: A permanent ban from any sort of public interaction
within the community.

Attribution

This Code of Conduct is adapted from the Contributor
Covenant [https://www.contributor-covenant.org], version 2.0,
available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct
enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ
at https://www.contributor-covenant.org/faq. Translations are available
at https://www.contributor-covenant.org/translations.

Roadmap

	0.4: Integration, Fit and finish

	0.3 (a.k.a. M3): Smartwatch

	0.2 (a.k.a. M2): Great developer experience

	M1: Dumb watch feature parity

0.4: Integration, Fit and finish

For 0.4 we focus on improving the watch/phone integration whilst also taking steps
to improve the general fit and finish.

Bootloader

	[] Stay in bootloader after battery run down

	[] Implement power off support (no splash screen)

Micropython

	[] Use SoftDevice sleep logic

	[] Rebase on later version of MicroPython

Wasp-os

	[] Watch/phone integration with GadgetBridge

	[] Music player support

	[] Set date/time

	[] Fully fledged wasp-os device class

wasptool

	[] Integrate a more powerful minifier into the wasptool paste() method

0.3 (a.k.a. M3): Smartwatch

At M3 we start to build out full fitness tracking and notification
functionality.

Reloader

	[X] Pre-flash image verification

	[X] Post-flash image verification

	[X] Board identity check

	[X] UICR update support

	[X] Improve linker map (everything except linker table at +256K)

	[X] mcuboot

	[X] Reconfigurable entry point (allow reloader to run from mcuboot)

	[X] Allow reloader to install mcuboot and flash app (from wasp-bootloader)

	[X] Allow reloader to install wasp-os (from mcuboot)

Wasp-os

	[X] Enable heart rate sensor

	[X] HRS3300 driver

	[X] HRS data post-processing

	[X] Heart rate counter app

	[X] Notifications

	[X] BLE notification protocol

	[X] Notification popups

	[X] Notification app (show notification history)

	[X] Add (out-of-tree) Gadgetbridge support

	[X] Step counting

	[X] BMA421 driver

	[X] Step counter app

	[X] Automatically enter SPI flash power saving mode

	[X] Documentation

	[X] Contributors guide (and code of conduct)

	[X] Debugging and troubleshooting guide

	[X] Screenshots for bootloader and all applications

	[X] Improve the install guide

	[X] Simulator

	[X] Add a simple skin for better screenshots

	[X] Full swipe detection (avoid keyboard)

0.2 (a.k.a. M2): Great developer experience

The focus for M2 is to make development faster and easier by providing
a file system and file transfer code. This allows much faster
development cycles compared to full downloads of frozen modules.
Additionally support for multiple event-driven applications will be
added during M2 to further help developers by providing example
applications.

Bootloader

	[X] OTA bootloader update

	[X] RTC time measurement whilst in bootloader

MicroPython

	[X] SPI FLASH driver

	[X] Enable LittleFS on SPI FLASH (at boot)

	[X] BLE file transfer

Wasp-os

	[X] Add dd/mm/yyyy support to RTC

	[X] Button driver (interrupt based)

	[X] Touch sensor driver

	[X] Event driven application framework

	[X] Stopwatch app

	[X] Settings app

	[X] PC-hosted simulation platform

	[X] Documentation

	[X] Sphinx framework and integration with github.io

	[X] Document bootloader protocols

	[X] Application writer’s guide

	[X] Write full docstring documentation for all wasp-os components

	[X] Application Launcher

	[X] Debug notifications

	[X] Multi-colour RLE images

	[X] Optimized “2-bit” RLE encoder and decoder

	[X] Logarithmic RBG332 <-> RGB56516bit color space conversion

M1: Dumb watch feature parity

The focus for M1 is to get wasp-os both to meet feature parity with a dumb
watch and to have a bootloader and watchdog strategy that is robust enough
to allow a PineTime case to be confidently glued shut.

Bootloader

	[X] Basic board ports (PineTime, DS-D6, 96Boards Nitrogen)

	[X] OTA application update

	[X] Enable watchdog before starting the application

	[X] Splash screen

	[X] Ignore start button for first few seconds

MicroPython

	[X] Basic board ports (PineTime, DS-D6, 96Boards Nitrogen)

	[X] Long press reset (conditional feeding of the watchdog)

	[X] Feed dog from REPL polling loop

	[X] Feed dog from a tick interrupt

Wasp-os

	[X] Display driver

	[X] Display initialization

	[X] Bitmap blitting

	[X] RLE coder and decoder

	[X] Optimized RLE inner loops

	[X] Backlight driver

	[X] Button driver (polling)

	[X] Battery/charger driver

	[X] Simple clock and battery level application

	[X] Basic (WFI) power saving

	[X] Implement simple RTC for nrf52

Licensing

wasp-os is licensed to you under the GNU Lesser General Public License, as
published by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

wasp-os is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License and the
GNU Lesser General Public License along with this program. If not, see
<https://www.gnu.org/licenses/>.

Notwithstanding the above some essential components of wasp-os, such as
the MicroPython distribution, are licensed under under different open
source licenses. The licensing for these components is clearly
indicated and reinforced by the directory and sub-module structure.

Additionally binary releases of wasp-os include a binary copy of the
Nordic Softdevice which is licensed under the 5-clause Nordic license.

	GNU Lesser General Public License
	0. Additional Definitions

	1. Exception to Section 3 of the GNU GPL

	2. Conveying Modified Versions

	4. Combined Works

	5. Combined Libraries

	6. Revised Versions of the GNU Lesser General Public License

	GNU General Public License
	Preamble

	TERMS AND CONDITIONS
	0. Definitions

	1. Source Code

	2. Basic Permissions

	3. Protecting Users’ Legal Rights From Anti-Circumvention Law

	4. Conveying Verbatim Copies

	5. Conveying Modified Source Versions

	6. Conveying Non-Source Forms

	7. Additional Terms

	8. Termination

	9. Acceptance Not Required for Having Copies

	10. Automatic Licensing of Downstream Recipients

	11. Patents

	12. No Surrender of Others’ Freedom

	13. Use with the GNU Affero General Public License

	14. Revised Versions of this License

	15. Disclaimer of Warranty

	16. Limitation of Liability

	17. Interpretation of Sections 15 and 16

	How to Apply These Terms to Your New Programs

	The MIT License (MIT)

	5-Clause Nordic License

GNU Lesser General Public License

Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

0. Additional Definitions

As used herein, “this License” refers to version 3 of the GNU Lesser
General Public License, and the “GNU GPL” refers to version 3 of the GNU
General Public License.

“The Library” refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An “Application” is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions

If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

	a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

	b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

	a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.

	b) Accompany the object code with a copy of the GNU GPL and this license
document.

4. Combined Works

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

	a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

	b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.

	c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

	d) Do one of the following:

	0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

	1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user’s computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

	e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

5. Combined Libraries

You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

	a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

	b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License “or any later version”
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy’s public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

GNU General Public License

Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc <http://fsf.org>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other
kinds of works.

The licenses for most software and other practical works are designed to take away
your freedom to share and change the works. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change all versions of a
program–to make sure it remains free software for all its users. We, the Free
Software Foundation, use the GNU General Public License for most of our software; it
applies also to any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for them if you wish), that you receive source
code or can get it if you want it, that you can change the software or use pieces of
it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or
asking you to surrender the rights. Therefore, you have certain responsibilities if
you distribute copies of the software, or if you modify it: responsibilities to
respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must pass on to the recipients the same freedoms that you received. You must make
sure that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert
copyright on the software, and (2) offer you this License giving you legal permission
to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is
no warranty for this free software. For both users’ and authors’ sake, the GPL
requires that modified versions be marked as changed, so that their problems will not
be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of
the software inside them, although the manufacturer can do so. This is fundamentally
incompatible with the aim of protecting users’ freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we have designed
this version of the GPL to prohibit the practice for those products. If such problems
arise substantially in other domains, we stand ready to extend this provision to
those domains in future versions of the GPL, as needed to protect the freedom of
users.

Finally, every program is threatened constantly by software patents. States should
not allow patents to restrict development and use of software on general-purpose
computers, but in those that do, we wish to avoid the special danger that patents
applied to a free program could make it effectively proprietary. To prevent this, the
GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in
a fashion requiring copyright permission, other than the making of an exact copy. The
resulting work is called a “modified version” of the earlier work or a
work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on
the Program.

To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for infringement under
applicable copyright law, except executing it on a computer or modifying a private
copy. Propagation includes copying, distribution (with or without modification),
making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through a computer
network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the
extent that it includes a convenient and prominently visible feature that (1)
displays an appropriate copyright notice, and (2) tells the user that there is no
warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this
License. If the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code

The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form of a
work.

A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of interfaces
specified for a particular programming language, one that is widely used among
developers working in that language.

The “System Libraries” of an executable work include anything, other than
the work as a whole, that (a) is included in the normal form of packaging a Major
Component, but which is not part of that Major Component, and (b) serves only to
enable use of the work with that Major Component, or to implement a Standard
Interface for which an implementation is available to the public in source code form.
A “Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system (if any) on which
the executable work runs, or a compiler used to produce the work, or an object code
interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the
source code needed to generate, install, and (for an executable work) run the object
code and to modify the work, including scripts to control those activities. However,
it does not include the work’s System Libraries, or general-purpose tools or
generally available free programs which are used unmodified in performing those
activities but which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for the work, and
the source code for shared libraries and dynamically linked subprograms that the work
is specifically designed to require, such as by intimate data communication or
control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate
automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License
explicitly affirms your unlimited permission to run the unmodified Program. The
output from running a covered work is covered by this License only if the output,
given its content, constitutes a covered work. This License acknowledges your rights
of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising
rights under this License with respect to the covered work, and you disclaim any
intention to limit operation or modification of the work as a means of enforcing,
against the work’s users, your or third parties’ legal rights to forbid circumvention
of technological measures.

4. Conveying Verbatim Copies

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and
any non-permissive terms added in accord with section 7 apply to the code; keep
intact all notices of the absence of any warranty; and give all recipients a copy of
this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

	a) The work must carry prominent notices stating that you modified it, and giving a
relevant date.

	b) The work must carry prominent notices stating that it is released under this
License and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

	c) You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license the
work in any other way, but it does not invalidate such permission if you have
separately received it.

	d) If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are
not by their nature extensions of the covered work, and which are not combined with
it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting
copyright are not used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work in an aggregate
does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under the
terms of this License, in one of these ways:

	a) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

	b) Convey the object code in, or embodied in, a physical product (including a
physical distribution medium), accompanied by a written offer, valid for at least
three years and valid for as long as you offer spare parts or customer support for
that product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange, for
a price no more than your reasonable cost of physically performing this conveying of
source, or (2) access to copy the Corresponding Source from a network server at no
charge.

	c) Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally and
noncommercially, and only if you received the object code with such an offer, in
accord with subsection 6b.

	d) Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to copy
the Corresponding Source along with the object code. If the place to copy the object
code is a network server, the Corresponding Source may be on a different server
(operated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying where to find
the Corresponding Source. Regardless of what server hosts the Corresponding Source,
you remain obligated to ensure that it is available for as long as needed to satisfy
these requirements.

	e) Convey the object code using peer-to-peer transmission, provided you inform
other peers where the object code and Corresponding Source of the work are being
offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the
Corresponding Source as a System Library, need not be included in conveying the
object code work.

A “User Product” is either (1) a “consumer product”, which
means any tangible personal property which is normally used for personal, family, or
household purposes, or (2) anything designed or sold for incorporation into a
dwelling. In determining whether a product is a consumer product, doubtful cases
shall be resolved in favor of coverage. For a particular product received by a
particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected to use, the
product. A product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to install and execute
modified versions of a covered work in that User Product from a modified version of
its Corresponding Source. The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient
in perpetuity or for a fixed term (regardless of how the transaction is
characterized), the Corresponding Source conveyed under this section must be
accompanied by the Installation Information. But this requirement does not apply if
neither you nor any third party retains the ability to install modified object code
on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to
continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules
and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an
implementation available to the public in source code form), and must require no
special password or key for unpacking, reading or copying.

7. Additional Terms

“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions. Additional
permissions that are applicable to the entire Program shall be treated as though they
were included in this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program, that part may be
used separately under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional
permissions may be written to require their own removal in certain cases when you
modify the work.) You may place additional permissions on material, added by you to a
covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a
covered work, you may (if authorized by the copyright holders of that material)
supplement the terms of this License with terms:

	a) Disclaiming warranty or limiting liability differently from the terms of
sections 15 and 16 of this License; or

	b) Requiring preservation of specified reasonable legal notices or author
attributions in that material or in the Appropriate Legal Notices displayed by works
containing it; or

	c) Prohibiting misrepresentation of the origin of that material, or requiring that
modified versions of such material be marked in reasonable ways as different from the
original version; or

	d) Limiting the use for publicity purposes of names of licensors or authors of the
material; or

	e) Declining to grant rights under trademark law for use of some trade names,
trademarks, or service marks; or

	f) Requiring indemnification of licensors and authors of that material by anyone
who conveys the material (or modified versions of it) with contractual assumptions of
liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as you received
it, or any part of it, contains a notice stating that it is governed by this License
along with a term that is a further restriction, you may remove that term. If a
license document contains a further restriction but permits relicensing or conveying
under this License, you may add to a covered work material governed by the terms of
that license document, provided that the further restriction does not survive such
relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in
the relevant source files, a statement of the additional terms that apply to those
files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a
separately written license, or stated as exceptions; the above requirements apply
either way.

8. Termination

You may not propagate or modify a covered work except as expressly provided under
this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a
particular copyright holder is reinstated (a) provisionally, unless and until the
copyright holder explicitly and finally terminates your license, and (b) permanently,
if the copyright holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently
if the copyright holder notifies you of the violation by some reasonable means, this
is the first time you have received notice of violation of this License (for any
work) from that copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of
parties who have received copies or rights from you under this License. If your
rights have been terminated and not permanently reinstated, you do not qualify to
receive new licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require
acceptance. However, nothing other than this License grants you permission to
propagate or modify any covered work. These actions infringe copyright if you do not
accept this License. Therefore, by modifying or propagating a covered work, you
indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an organization, or
merging organizations. If propagation of a covered work results from an entity
transaction, each party to that transaction who receives a copy of the work also
receives whatever licenses to the work the party’s predecessor in interest had or
could give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if the predecessor
has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty,
or other charge for exercise of rights granted under this License, and you may not
initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging
that any patent claim is infringed by making, using, selling, offering for sale, or
importing the Program or any portion of it.

11. Patents

A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The work thus
licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or
controlled by the contributor, whether already acquired or hereafter acquired, that
would be infringed by some manner, permitted by this License, of making, using, or
selling its contributor version, but do not include claims that would be infringed
only as a consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale,
import and otherwise run, modify and propagate the contents of its contributor
version.

In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a patent (such as an
express permission to practice a patent or covenant not to sue for patent
infringement). To “grant” such a patent license to a party means to make
such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the
Corresponding Source of the work is not available for anyone to copy, free of charge
and under the terms of this License, through a publicly available network server or
other readily accessible means, then you must either (1) cause the Corresponding
Source to be so available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner consistent with
the requirements of this License, to extend the patent license to downstream
recipients. “Knowingly relying” means you have actual knowledge that, but
for the patent license, your conveying the covered work in a country, or your
recipient’s use of the covered work in a country, would infringe one or more
identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you
convey, or propagate by procuring conveyance of, a covered work, and grant a patent
license to some of the parties receiving the covered work authorizing them to use,
propagate, modify or convey a specific copy of the covered work, then the patent
license you grant is automatically extended to all recipients of the covered work and
works based on it.

A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on the
non-exercise of one or more of the rights that are specifically granted under this
License. You may not convey a covered work if you are a party to an arrangement with
a third party that is in the business of distributing software, under which you make
payment to the third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties who would receive
the covered work from you, a discriminatory patent license (a) in connection with
copies of the covered work conveyed by you (or copies made from those copies), or (b)
primarily for and in connection with specific products or compilations that contain
the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied
license or other defenses to infringement that may otherwise be available to you
under applicable patent law.

12. No Surrender of Others’ Freedom

If conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from
those to whom you convey the Program, the only way you could satisfy both those terms
and this License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered
work, but the special requirements of the GNU Affero General Public License, section
13, concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later
version” applies to it, you have the option of following the terms and
conditions either of that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a version number of the GNU
General Public License, you may choose any version ever published by the Free
Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of
your choosing to follow a later version.

15. Disclaimer of Warranty

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE
OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16

If the disclaimer of warranty and limitation of liability provided above cannot be
given local legal effect according to their terms, reviewing courts shall apply local
law that most closely approximates an absolute waiver of all civil liability in
connection with the Program, unless a warranty or assumption of liability accompanies
a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone
can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them
to the start of each source file to most effectively state the exclusion of warranty;
and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this
when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different;
for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more
information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is
what you want to do, use the GNU Lesser General Public License instead of this
License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

The MIT License (MIT)

Copyright © <year> <copyright holders> (see individual files for
copyright information)

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

5-Clause Nordic License

Copyright (c) 2007 - 2018, Nordic Semiconductor ASA
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form, except as embedded into a Nordic
Semiconductor ASA integrated circuit in a product or a software update for
such product, must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

	Neither the name of Nordic Semiconductor ASA nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

	This software, with or without modification, must only be used with a
Nordic Semiconductor ASA integrated circuit.

	Any software provided in binary form under this license must not be reverse
engineered, decompiled, modified and/or disassembled.

THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA “AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 a |
 d |
 f |
 i |
 l |
 w

 		 	

 		
 a	

 	[image: -]
 	
 apps	

 	
 	
 apps.clock	

 	
 	
 apps.fibonacci_clock	

 	
 	
 apps.flashlight	

 	
 	
 apps.gameoflife	

 	
 	
 apps.launcher	

 	
 	
 apps.musicplayer	

 	
 	
 apps.pager	

 	
 	
 apps.template	

 	
 	
 apps.testapp	

 		 	

 		
 d	

 	
 	
 draw565	

 	[image: -]
 	
 drivers	

 	
 	
 drivers.battery	

 	
 	
 drivers.cst816s	

 	
 	
 drivers.nrf_rtc	

 	
 	
 drivers.signal	

 	
 	
 drivers.st7789	

 	
 	
 drivers.vibrator	

 		 	

 		
 f	

 	[image: -]
 	
 fonts	

 	
 	
 fonts.clock	

 	
 	
 fonts.sans24	

 		 	

 		
 i	

 	
 	
 icons	

 		 	

 		
 l	

 	
 	
 logo	

 		 	

 		
 w	

 	
 	
 wasp	

 	
 	
 watch	

 	
 	
 widgets	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__init__() (apps.template.TemplateApp method)

 	(draw565.Draw565 method)

 	(drivers.battery.Battery method)

 	(drivers.cst816s.CST816S method)

 	(drivers.nrf_rtc.RTC method)

 	(drivers.signal.Signal method)

 	(drivers.st7789.ST7789 method)

 	(drivers.vibrator.Vibrator method)

 	
 	__weakref__ (apps.template.TemplateApp attribute)

 	_draw() (apps.template.TemplateApp method)

 	_update() (apps.template.TemplateApp method)

A

 	
 	apps.clock (module)

 	apps.fibonacci_clock (module)

 	apps.flashlight (module)

 	apps.gameoflife (module)

 	
 	apps.launcher (module)

 	apps.musicplayer (module)

 	apps.pager (module)

 	apps.template (module)

 	apps.testapp (module)

B

 	
 	background() (apps.flashlight.FlashlightApp method)

 	(apps.pager.CrashApp method)

 	(apps.pager.PagerApp method)

 	(apps.template.TemplateApp method)

 	
 	Battery (class in drivers.battery)

 	BatteryMeter (class in widgets)

 	blit() (draw565.Draw565 method)

 	brightness (wasp.Manager attribute)

C

 	
 	cancel_alarm() (wasp.Manager method)

 	charging() (drivers.battery.Battery method)

 	Clock (class in widgets)

 	
 	clock (widgets.StatusBar attribute)

 	ClockApp (class in apps.clock)

 	CrashApp (class in apps.pager)

 	CST816S (class in drivers.cst816s)

D

 	
 	draw() (apps.flashlight.FlashlightApp method)

 	(widgets.BatteryMeter method)

 	(widgets.Clock method)

 	(widgets.NotificationBar method)

 	(widgets.ScrollIndicator method)

 	(widgets.Slider method)

 	(widgets.StatusBar method)

 	
 	Draw565 (class in draw565)

 	draw565 (module)

 	drivers.battery (module)

 	drivers.cst816s (module)

 	drivers.nrf_rtc (module)

 	drivers.signal (module)

 	drivers.st7789 (module)

 	drivers.vibrator (module)

E

 	
 	EventMask (class in wasp)

 	
 	EventType (class in wasp)

F

 	
 	fill() (draw565.Draw565 method)

 	(drivers.st7789.ST7789 method)

 	FlashlightApp (class in apps.flashlight)

 	fonts.clock (module)

 	fonts.sans24 (module)

 	foreground() (apps.clock.ClockApp method)

 	(apps.flashlight.FlashlightApp method)

 	(apps.launcher.LauncherApp method)

 	(apps.pager.CrashApp method)

 	(apps.pager.NotificationApp method)

 	(apps.pager.PagerApp method)

 	(apps.template.TemplateApp method)

 	(apps.testapp.TestApp method)

G

 	
 	get_event() (drivers.cst816s.CST816S method)

 	(wasp.PinHandler method)

 	get_localtime() (drivers.nrf_rtc.RTC method)

 	
 	get_time() (drivers.nrf_rtc.RTC method)

 	get_touch_data() (drivers.cst816s.CST816S method)

 	get_uptime_ms() (drivers.nrf_rtc.RTC method)

I

 	
 	ICON (apps.clock.ClockApp attribute)

 	(apps.flashlight.FlashlightApp attribute)

 	(apps.launcher.LauncherApp attribute)

 	(apps.pager.PagerApp attribute)

 	(apps.testapp.TestApp attribute)

 	
 	icons (module)

 	init_display() (drivers.st7789.ST7789 method)

 	invert() (drivers.st7789.ST7789 method)

K

 	
 	keep_awake() (wasp.Manager method)

L

 	
 	LauncherApp (class in apps.launcher)

 	
 	level() (drivers.battery.Battery method)

 	logo (module)

M

 	
 	Manager (class in wasp)

 	
 	mute() (drivers.st7789.ST7789 method)

N

 	
 	NAME (apps.clock.ClockApp attribute)

 	(apps.flashlight.FlashlightApp attribute)

 	(apps.launcher.LauncherApp attribute)

 	(apps.pager.NotificationApp attribute)

 	(apps.pager.PagerApp attribute)

 	(apps.testapp.TestApp attribute)

 	
 	navigate() (wasp.Manager method)

 	NotificationApp (class in apps.pager)

 	NotificationBar (class in widgets)

O

 	
 	off() (drivers.signal.Signal method)

 	
 	on() (drivers.signal.Signal method)

P

 	
 	PagerApp (class in apps.pager)

 	PinHandler (class in wasp)

 	power() (drivers.battery.Battery method)

 	poweroff() (drivers.st7789.ST7789 method)

 	
 	poweron() (drivers.st7789.ST7789 method)

 	press() (apps.template.TemplateApp method)

 	(apps.testapp.TestApp method)

 	pulse() (drivers.vibrator.Vibrator method)

Q

 	
 	quick_end() (drivers.st7789.ST7789_SPI method)

 	
 	quick_start() (drivers.st7789.ST7789_SPI method)

 	quick_write() (drivers.st7789.ST7789_SPI method)

R

 	
 	rawblit() (drivers.st7789.ST7789 method)

 	register() (wasp.Manager method)

 	request_event() (wasp.Manager method)

 	request_tick() (wasp.Manager method)

 	reset() (draw565.Draw565 method)

 	(drivers.st7789.ST7789_SPI method)

 	
 	reset_touch_data() (drivers.cst816s.CST816S method)

 	rleblit() (draw565.Draw565 method)

 	RTC (class in drivers.nrf_rtc)

 	run() (wasp.Manager method)

S

 	
 	schedule() (wasp.Manager method)

 	ScrollIndicator (class in widgets)

 	set_alarm() (wasp.Manager method)

 	set_color() (draw565.Draw565 method)

 	set_font() (draw565.Draw565 method)

 	set_localtime() (drivers.nrf_rtc.RTC method)

 	set_window() (drivers.st7789.ST7789 method)

 	Signal (class in drivers.signal)

 	sleep() (apps.clock.ClockApp method)

 	(apps.template.TemplateApp method)

 	(drivers.cst816s.CST816S method)

 	(wasp.Manager method)

 	
 	Slider (class in widgets)

 	ST7789 (class in drivers.st7789)

 	ST7789_SPI (class in drivers.st7789)

 	StatusBar (class in widgets)

 	string() (draw565.Draw565 method)

 	swipe() (apps.launcher.LauncherApp method)

 	(apps.pager.CrashApp method)

 	(apps.pager.PagerApp method)

 	(apps.template.TemplateApp method)

 	(apps.testapp.TestApp method)

 	switch() (wasp.Manager method)

T

 	
 	TemplateApp (class in apps.template)

 	TestApp (class in apps.testapp)

 	tick() (apps.clock.ClockApp method)

 	(apps.flashlight.FlashlightApp method)

 	(apps.template.TemplateApp method)

 	
 	time() (drivers.nrf_rtc.RTC method)

 	touch() (apps.launcher.LauncherApp method)

 	(apps.template.TemplateApp method)

 	(apps.testapp.TestApp method)

U

 	
 	update() (drivers.nrf_rtc.RTC method)

 	(widgets.BatteryMeter method)

 	(widgets.Clock method)

 	(widgets.NotificationBar method)

 	(widgets.ScrollIndicator method)

 	(widgets.StatusBar method)

 	
 	uptime (drivers.nrf_rtc.RTC attribute)

V

 	
 	value() (drivers.signal.Signal method)

 	
 	Vibrator (class in drivers.vibrator)

 	voltage_mv() (drivers.battery.Battery method)

W

 	
 	wake() (apps.clock.ClockApp method)

 	(apps.template.TemplateApp method)

 	(drivers.cst816s.CST816S method)

 	(wasp.Manager method)

 	wasp (module)

 	wasp.system (in module wasp)

 	wasp.watch (in module wasp)

 	watch (module)

 	watch.backlight (in module watch)

 	watch.battery (in module watch)

 	
 	watch.button (in module watch)

 	watch.display (in module watch)

 	watch.drawable (in module watch)

 	watch.rtc (in module watch)

 	watch.touch (in module watch)

 	watch.vibrator (in module watch)

 	widgets (module)

 	wrap() (draw565.Draw565 method)

 	write_cmd() (drivers.st7789.ST7789_SPI method)

 	write_data() (drivers.st7789.ST7789_SPI method)

Our Pledge

We as members, contributors, and leaders pledge to make participation in
our community a harassment-free experience for everyone, regardless of
age, body size, visible or invisible disability, ethnicity, sex
characteristics, gender identity and expression, level of experience,
education, socio-economic status, nationality, personal appearance,
race, religion, or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open,
welcoming, diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our
community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our
mistakes, and learning from the experience

	Focusing on what is best not just for us as individuals, but for the
overall community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or
advances of any kind

	Trolling, insulting or derogatory comments, and personal or political
attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email
address, without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our
standards of acceptable behavior and will take appropriate and fair
corrective action in response to any behavior that they deem
inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other
contributions that are not aligned to this Code of Conduct, and will
communicate reasons for moderation decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also
applies when an individual is officially representing the community in
public spaces. Examples of representing our community include using an
official e-mail address, posting via an official social media account,
or acting as an appointed representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported to the community leaders responsible for enforcement at
wasp-os@redfelineninja.org.uk . All complaints will be reviewed and
investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security
of the reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in
determining the consequences for any action they deem in violation of
this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior
deemed unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders,
providing clarity around the nature of the violation and an explanation
of why the behavior was inappropriate. A public apology may be
requested.

2. Warning

Community Impact: A violation through a single incident or series of
actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, for a specified period of
time. This includes avoiding interactions in community spaces as well as
external channels like social media. Violating these terms may lead to a
temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards,
including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No
public or private interaction with the people involved, including
unsolicited interaction with those enforcing the Code of Conduct, is
allowed during this period. Violating these terms may lead to a
permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of
individuals.

Consequence: A permanent ban from any sort of public interaction
within the community.

Attribution

This Code of Conduct is adapted from the Contributor
Covenant [https://www.contributor-covenant.org], version 2.0,
available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct
enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ
at https://www.contributor-covenant.org/faq. Translations are available
at https://www.contributor-covenant.org/translations.

 _static/up-pressed.png

_static/up.png

_images/0.jpg

_images/01.jpg
P

wasp-os +
Game of Life +
Micropython on
Pine64 PineTime

0%
z

_images/02.jpg

_images/03.jpg
a
| 19:16

26702020

_images/04.jpg

nav.xhtml

 Table of Contents

 		
 Welcome to WASP-OS’s documentation!

 		
 Watch Application System in Python

 		
 Introduction

 		
 Documentation

 		
 Getting Started

 		
 Videos

 		
 Screenshots

 		
 Installation Guide

 		
 Building wasp-os from source

 		
 Device Support

 		
 Pine64 PineTime

 		
 The wasp-os simulator

 		
 Colmi P8

 		
 Senbono K9

 		
 Installing wasp-bootloader

 		
 nRF Connect for Android

 		
 DaFlasher for Android

 		
 Using an SWD programmer

 		
 Installing wasp-os

 		
 nRF Connect for Android

 		
 DaFlasher for Android

 		
 wasptool for GNU/Linux

 		
 Troubleshooting

 		
 OTA update mode

 		
 Safe mode

 		
 Normal operation

 		
 main.py

 		
 Application Library

 		
 Built-in

 		
 Watch faces

 		
 Fibonacci clock

 		
 Games

 		
 Conway’s Game of Life

 		
 Integration

 		
 Music Player for GadgetBridge

 		
 Application Writer’s Guide

 		
 Introduction

 		
 Hello World for wasp-os

 		
 Application life-cycle

 		
 API primer

 		
 System management

 		
 Drawing

 		
 MicroPython

 		
 How to run your application

 		
 Testing on the simulator

 		
 Testing on the device

 		
 Making it permanent

 		
 Freezing your application into the wasp-os binary

 		
 Application entry points

 		
 Wasp-os Reference Manual

 		
 System

 		
 Wasp-os system manager

 		
 Watch driver instances

 		
 RGB565 drawing library

 		
 Widget library

 		
 Device drivers

 		
 Generic lithium ion battery driver

 		
 Hynitron CST816S touch contoller driver

 		
 nRF-family RTC driver

 		
 Inverting pin wrapper

 		
 Sitronix ST7789 display driver

 		
 Generic PWM capable vibration motor driver

 		
 Applications

 		
 Digital clock

 		
 Flashlight

 		
 Application launcher

 		
 Pager applications

 		
 Self Tests

 		
 Bootloader

 		
 GPREGRET protocol

 		
 PNVRAM protocol

 		
 Watchdog protocol

 		
 Contributor’s Guide

 		
 Introduction

 		
 Developer Certificate of Origin

 		
 Git Hints and Tricks

 		
 Quick fixes

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Enforcement Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Enforcement Guidelines

 		
 Attribution

 		
 Roadmap

 		
 0.4: Integration, Fit and finish

 		
 Bootloader

 		
 Micropython

 		
 Wasp-os

 		
 wasptool

 		
 0.3 (a.k.a. M3): Smartwatch

 		
 Reloader

 		
 Wasp-os

 		
 0.2 (a.k.a. M2): Great developer experience

 		
 Bootloader

 		
 MicroPython

 		
 Wasp-os

 		
 M1: Dumb watch feature parity

 		
 Bootloader

 		
 MicroPython

 		
 Wasp-os

 		
 Licensing

 		
 GNU Lesser General Public License

 		
 0. Additional Definitions

 		
 1. Exception to Section 3 of the GNU GPL

 		
 2. Conveying Modified Versions

 		
 4. Combined Works

 		
 5. Combined Libraries

 		
 6. Revised Versions of the GNU Lesser General Public License

 		
 GNU General Public License

 		
 Preamble

 		
 TERMS AND CONDITIONS

 		
 How to Apply These Terms to Your New Programs

 		
 The MIT License (MIT)

 		
 5-Clause Nordic License

_images/ClockApp.png
zzzzzzzzz

_images/FiboApp.png
10 Oct 2020

_images/05.jpg

_images/Bootloader.png
Start

X)) 3

_images/LauncherApp.png
Self Test Settings

="

Torch

_images/LifeApp.png

_images/HaikuApp.png
Written in Python

Everything can be
changed

You have the
power

_images/HeartApp.png

_images/MusicApp.png
Dreams of
Bamboo

®

Tasteless Brass
Duck

_images/SelfTestApp.png
RLE test

0.176933s

_images/SettingsApp.png
Brightness

—)—

Mid

_images/TorchApp.png

_images/clock_app.jpg

_images/StepsApp.png

_images/TimerApp.png
19:05
0:21:

0:16.32
0:10.32
0:05.28

PN W
[e]o}e]

_static/comment-bright.png

_images/graphviz-b70ea07f5316bcffa17b488873a57d7cfa2641ef.png
background()

SLEEPING

GOTO ClockApp

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-close.png

_static/file.png

_static/logo.png
%\Qv

_static/down.png

_static/minus.png

_static/plus.png

